886 research outputs found

    Self-trapping of Bose-Einstein condensates in optical lattices

    Full text link
    The self-trapping phenomenon of Bose-Einstein condensates (BECs) in optical lattices is studied extensively by numerically solving the Gross-Pitaevskii equation. Our numerical results not only reproduce the phenomenon that was observed in a recent experiment [Anker {\it et al.}, Phys. Rev. Lett. {\bf 94} (2005)020403], but also find that the self-trapping breaks down at long evolution times, that is, the self-trapping in optical lattices is only temporary. The analysis of our numerical results shows that the self-trapping in optical lattices is related to the self-trapping of BECs in a double-well potential. A possible mechanism of the formation of steep edges in the wave packet evolution is explored in terms of the dynamics of relative phases between neighboring wells.Comment: 8 pages, 15 figure

    Pulse-duration dependence of high-order harmonic generation with coherent superposition state

    Full text link
    We make a systematic study of high-order harmonic generation (HHG) in a He+^+-like model ion when the initial states are prepared as a coherent superposition of the ground state and an excited state. It is found that, according to the degree of the ionization of the excited state, the laser intensity can be divided into three regimes in which HHG spectra exhibit different characteristics. The pulse-duration dependence of the HHG spectra in these regimes is studied. We also demonstrate evident advantages of using coherent superposition state to obtain high conversion efficiency. The conversion efficiency can be increased further if ultrashort laser pulses are employed
    corecore